FACTORS AFFECTING THE RESISTIVITY OF ELECTRICAL MATERIALS
1. Temperature : The electrical resistance of most metals increases with increase of
temperature while those of semiconductors and electrolytes decreases with increase of
temperature. Many metals have vanishing resistivity at absolute zero of temperature
which is known as superconductivity.
2. Alloying : A solid solution has a less regular structure than a pure metal. Consequently,
the electrical conductivity of a solid solution alloy drops off rapidly with increased alloy
content. The addition of small amount of impurities leads to considerable increase in
resistivity.
3. Cold Work : Mechanical distortion of the crystal structure decrease the conductivity of a
metal because the localized strains interfere with electron movement.
4. Age Hardening : It increases the resistivity of an alloy.
1. Temperature : The electrical resistance of most metals increases with increase of
temperature while those of semiconductors and electrolytes decreases with increase of
temperature. Many metals have vanishing resistivity at absolute zero of temperature
which is known as superconductivity.
2. Alloying : A solid solution has a less regular structure than a pure metal. Consequently,
the electrical conductivity of a solid solution alloy drops off rapidly with increased alloy
content. The addition of small amount of impurities leads to considerable increase in
resistivity.
3. Cold Work : Mechanical distortion of the crystal structure decrease the conductivity of a
metal because the localized strains interfere with electron movement.
4. Age Hardening : It increases the resistivity of an alloy.
No comments:
Post a Comment